K-Means聚类算法原理(可视化超详细)

引言:

K-Means是一种经典的聚类算法,被广泛应用于数据挖掘、图像处理和机器学习等领域。它的原理简单但功能强大,能够将数据集划分成不同的簇,每个簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。本文将介绍K-Means算法的基本概念和原理。

K-Means算法原理:

K-Means算法的基本原理是:通过迭代的方式,将数据点划分到最接近的类簇中心点所代表的类簇中,然后根据每个类簇内的所有点重新计算该类簇的中心点(取平均值),再不断重复此过程,直至类簇中心点的变化很小或达到指定的迭代次数。

  • 聚类数目(K)的选择: K-Means算法的第一步是确定要将数据划分成多少个簇。这个选择通常基于领域知识或使用Elbow方法等统计技巧来确定。K的选择对于聚类结果有着重要的影响。如果K选择过小,可能会导致簇的划分不够细致,无法准确地反映数据的结构;如果K选择过大,可能会导致簇的划分过于细致,会被数据的噪声影响,导致分类不准确。
  • 距离的度量: K-Means使用欧式距离(Euclidean distance)来度量数据点之间的相似性,但也可以根据具体问题选择其他距离度量方法。
  • 质心: 每个簇都有一个质心,它是该簇内所有数据点的均值。质心代表了簇的中心位置。
  • 优化目标: K-Means的优化目标是最小化每个数据点到其所属簇质心的距离之和。

K-Means算法步骤:

这里我们将数据可视化,以便更好的解释k-Means聚类的过程,想要自己体验的小伙伴可以点击这里查看:

K-means聚类可视化网址

让我们先看看需要进行分类的数据(未处理):

1.首先,选择k个初始聚类中心点(可以随机选择或根据经验选择,这里的k设置为3)。这里我们初始了三个聚类中心点(红绿蓝)

2.针对每个数据点,计算其与k个聚类中心点的距离(这里的k设置为3),将其归为距离最近的聚类中心点所在的类。这里可以看到数据被分为红绿蓝三个类别,加粗的为初始聚类中心点

3.计算每个聚类中心点所在类的数据点的平均值,将其作为新的聚类中心点。经过再一次计算,发现聚类中心点已经改变位置,所以接下来我们要重新根据欧式距离(Euclidean distance)来度量数据点之间的相似性,重新分成三个簇。

4.重复步骤2和步骤3,直到聚类中心点不再发生变化或已达到预先设定的停止条件。这里一共迭代了四次就成功将数据分为三类簇。

5.最终将数据集划分为k个不同的类。

结论:

K-Means算法是一个强大的聚类工具,因为他属于无监督学习,所以能够帮助我们发现数据集中的隐藏模式和结构。但是,正确选择聚类数目和合适的初始质心对算法的性能至关重要。此外,K-Means也可以通过优化方法进行改进,以获得更好的聚类结果。

 


原文链接:https://blog.csdn.net/AI_dataloads/article/details/133322550      K-Means聚类算法原理(可视化超详细)

https://blog.csdn.net/qq_38614074/article/details/137456095   【机器学习-14】K-means聚类算法:原理、应用与优化

感谢你的阅读


欢迎评论交流


忽如一夜春风来,千树万树梨花开。

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇