在深度学习中,TensorFlow是一个非常流行的框架,而tensor就是张量的意思。
张量是矩阵的扩展与延伸。
Tensor的对象有三个属性:
(1)rank:number of dimensions
(2)shape: number of rows and columns
(3)type: data type of tensor’s elements
结合其属性就很好理解张量了,以下是从作者开心果汁那里参考的例子:
- 3 # a rank 0 tensor; this is a scalar with shape []
- [1. ,2., 3.] # a rank 1 tensor; this is a vector with shape [3]
- [[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
- [[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3] 常说的张量就是3阶张量
张量的阶数有时候也称为维度,或者轴。譬如一个矩阵[[1,2],[3,4]],是一个2阶张量,有两个维度或轴,沿着第0个轴(为了与python的计数方式一致)你看到的是[1,2],[3,4]两个向量,沿着第1个轴你看到的是[1,3],[2,4]两个向量。
下面的代码可以帮助理解张量tensor“沿着某个轴”是什么意思:
import numpy as np a = np.array([[1,2],[3,4]]) sum0 = np.sum(a, axis=0) sum1 = np.sum(a, axis=1) print(a) print(sum0) print(sum1)
输出:
[[1 2]
[3 4]]
[4 6]
[3 7]
最后总结一下:在深度学习中,Tensor实际上就是一个多维数组(multidimensional array),其目的是能够创造更高维度的矩阵、向量。
ps: 在计算机视觉中,彩色图片就是用3阶张量描述的。黑白图片可以用矩阵描述,加上高度维度描述RGB后就可以描述彩色图片了。
参考资料:
作者:恒仔 地址:https://zhuanlan.zhihu.com/p/48982978
作者:开心果汁 地址:https://blog.csdn.net/u013421629/article/details/75236151